Explainable Voting

The design of voting rules is traditionally guided by desirable axioms. Recent work shows that, surprisingly, the axiomatic approach can also support the generation of explanations for voting outcomes. However, no bounds on the size of these explanations is given; for all we know, they may be unbearably tedious. We prove, however, that outcomes of the important Borda rule can be explained using $O(m^2)$ steps, where $m$ is the number of alternatives. Our main technical result is a general lower bound that, in particular, implies that the foregoing bound is asymptotically tight. We discuss the significance of our results for AI and machine learning, including their potential to bolster an emerging paradigm of automated decision making called virtual democracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here