Exploiting Logic Locking for a Neural Trojan Attack on Machine Learning Accelerators

12 Apr 2023  ·  Hongye Xu, Dongfang Liu, Cory Merkel, Michael Zuzak ·

Logic locking has been proposed to safeguard intellectual property (IP) during chip fabrication. Logic locking techniques protect hardware IP by making a subset of combinational modules in a design dependent on a secret key that is withheld from untrusted parties. If an incorrect secret key is used, a set of deterministic errors is produced in locked modules, restricting unauthorized use. A common target for logic locking is neural accelerators, especially as machine-learning-as-a-service becomes more prevalent. In this work, we explore how logic locking can be used to compromise the security of a neural accelerator it protects. Specifically, we show how the deterministic errors caused by incorrect keys can be harnessed to produce neural-trojan-style backdoors. To do so, we first outline a motivational attack scenario where a carefully chosen incorrect key, which we call a trojan key, produces misclassifications for an attacker-specified input class in a locked accelerator. We then develop a theoretically-robust attack methodology to automatically identify trojan keys. To evaluate this attack, we launch it on several locked accelerators. In our largest benchmark accelerator, our attack identified a trojan key that caused a 74\% decrease in classification accuracy for attacker-specified trigger inputs, while degrading accuracy by only 1.7\% for other inputs on average.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here