Exploration in Action Space

31 Mar 2020  ·  Anirudh Vemula, Wen Sun, J. Andrew Bagnell ·

Parameter space exploration methods with black-box optimization have recently been shown to outperform state-of-the-art approaches in continuous control reinforcement learning domains. In this paper, we examine reasons why these methods work better and the situations in which they are worse than traditional action space exploration methods. Through a simple theoretical analysis, we show that when the parametric complexity required to solve the reinforcement learning problem is greater than the product of action space dimensionality and horizon length, exploration in action space is preferred. This is also shown empirically by comparing simple exploration methods on several toy problems.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here