Exploring Decomposition for Table-based Fact Verification

Findings (EMNLP) 2021  ·  Xiaoyu Yang, Xiaodan Zhu ·

Fact verification based on structured data is challenging as it requires models to understand both natural language and symbolic operations performed over tables. Although pre-trained language models have demonstrated a strong capability in verifying simple statements, they struggle with complex statements that involve multiple operations. In this paper, we improve fact verification by decomposing complex statements into simpler subproblems. Leveraging the programs synthesized by a weakly supervised semantic parser, we propose a program-guided approach to constructing a pseudo dataset for decomposition model training. The subproblems, together with their predicted answers, serve as the intermediate evidence to enhance our fact verification model. Experiments show that our proposed approach achieves the new state-of-the-art performance, an 82.7\% accuracy, on the TabFact benchmark.

PDF Abstract Findings (EMNLP) 2021 PDF Findings (EMNLP) 2021 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here