Exploring Predictive Uncertainty and Calibration in NLP: A Study on the Impact of Method & Data Scarcity

20 Oct 2022  ·  Dennis Ulmer, Jes Frellsen, Christian Hardmeier ·

We investigate the problem of determining the predictive confidence (or, conversely, uncertainty) of a neural classifier through the lens of low-resource languages. By training models on sub-sampled datasets in three different languages, we assess the quality of estimates from a wide array of approaches and their dependence on the amount of available data. We find that while approaches based on pre-trained models and ensembles achieve the best results overall, the quality of uncertainty estimates can surprisingly suffer with more data. We also perform a qualitative analysis of uncertainties on sequences, discovering that a model's total uncertainty seems to be influenced to a large degree by its data uncertainty, not model uncertainty. All model implementations are open-sourced in a software package.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here