Factorized Blank Thresholding for Improved Runtime Efficiency of Neural Transducers

2 Nov 2022  ·  Duc Le, Frank Seide, Yuhao Wang, Yang Li, Kjell Schubert, Ozlem Kalinli, Michael L. Seltzer ·

We show how factoring the RNN-T's output distribution can significantly reduce the computation cost and power consumption for on-device ASR inference with no loss in accuracy. With the rise in popularity of neural-transducer type models like the RNN-T for on-device ASR, optimizing RNN-T's runtime efficiency is of great interest. While previous work has primarily focused on the optimization of RNN-T's acoustic encoder and predictor, this paper focuses the attention on the joiner. We show that despite being only a small part of RNN-T, the joiner has a large impact on the overall model's runtime efficiency. We propose to utilize HAT-style joiner factorization for the purpose of skipping the more expensive non-blank computation when the blank probability exceeds a certain threshold. Since the blank probability can be computed very efficiently and the RNN-T output is dominated by blanks, our proposed method leads to a 26-30% decoding speed-up and 43-53% reduction in on-device power consumption, all the while incurring no accuracy degradation and being relatively simple to implement.

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here