Fair Node Representation Learning via Adaptive Data Augmentation

21 Jan 2022  ·  O. Deniz Kose, Yanning Shen ·

Node representation learning has demonstrated its efficacy for various applications on graphs, which leads to increasing attention towards the area. However, fairness is a largely under-explored territory within the field, which may lead to biased results towards underrepresented groups in ensuing tasks. To this end, this work theoretically explains the sources of bias in node representations obtained via Graph Neural Networks (GNNs). Our analysis reveals that both nodal features and graph structure lead to bias in the obtained representations. Building upon the analysis, fairness-aware data augmentation frameworks on nodal features and graph structure are developed to reduce the intrinsic bias. Our analysis and proposed schemes can be readily employed to enhance the fairness of various GNN-based learning mechanisms. Extensive experiments on node classification and link prediction are carried out over real networks in the context of graph contrastive learning. Comparison with multiple benchmarks demonstrates that the proposed augmentation strategies can improve fairness in terms of statistical parity and equal opportunity, while providing comparable utility to state-of-the-art contrastive methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here