Fast and Accurate Bilateral Filtering using Gauss-Polynomial Decomposition

1 May 2015  ·  Kunal. N. Chaudhury ·

The bilateral filter is a versatile non-linear filter that has found diverse applications in image processing, computer vision, computer graphics, and computational photography. A widely-used form of the filter is the Gaussian bilateral filter in which both the spatial and range kernels are Gaussian. A direct implementation of this filter requires $O(\sigma^2)$ operations per pixel, where $\sigma$ is the standard deviation of the spatial Gaussian. In this paper, we propose an accurate approximation algorithm that can cut down the computational complexity to $O(1)$ per pixel for any arbitrary $\sigma$ (constant-time implementation). This is based on the observation that the range kernel operates via the translations of a fixed Gaussian over the range space, and that these translated Gaussians can be accurately approximated using the so-called Gauss-polynomials. The overall algorithm emerging from this approximation involves a series of spatial Gaussian filtering, which can be implemented in constant-time using separability and recursion. We present some preliminary results to demonstrate that the proposed algorithm compares favorably with some of the existing fast algorithms in terms of speed and accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods