Fast and robust tensor decomposition with applications to dictionary learning

27 Jun 2017Tselil SchrammDavid Steurer

We develop fast spectral algorithms for tensor decomposition that match the robustness guarantees of the best known polynomial-time algorithms for this problem based on the sum-of-squares (SOS) semidefinite programming hierarchy. Our algorithms can decompose a 4-tensor with $n$-dimensional orthonormal components in the presence of error with constant spectral norm (when viewed as an $n^2$-by-$n^2$ matrix)... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet