Fast expansion into harmonics on the disk: a steerable basis with fast radial convolutions

27 Jul 2022  ·  Nicholas F. Marshall, Oscar Mickelin, Amit Singer ·

We present a fast and numerically accurate method for expanding digitized $L \times L$ images representing functions on $[-1,1]^2$ supported on the disk $\{x \in \mathbb{R}^2 : |x|<1\}$ in the harmonics (Dirichlet Laplacian eigenfunctions) on the disk. Our method, which we refer to as the Fast Disk Harmonics Transform (FDHT), runs in $O(L^2 \log L)$ operations. This basis is also known as the Fourier-Bessel basis, and it has several computational advantages: it is orthogonal, ordered by frequency, and steerable in the sense that images expanded in the basis can be rotated by applying a diagonal transform to the coefficients. Moreover, we show that convolution with radial functions can also be efficiently computed by applying a diagonal transform to the coefficients.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods