Fast Light-Field Disparity Estimation With Multi-Disparity-Scale Cost Aggregation

ICCV 2021  ·  Zhicong Huang, Xuemei Hu, Zhou Xue, Weizhu Xu, Tao Yue ·

Light field images contain both angular and spatial information of captured light rays. The rich information of light fields enables straightforward disparity recovery capability but demands high computational cost as well. In this paper, we design a lightweight disparity estimation model with physical-based multi-disparity-scale cost volume aggregation for fast disparity estimation. By introducing a sub-network of edge guidance, we significantly improve the recovery of geometric details near edges and improve the overall performance. We test the proposed model extensively on both synthetic and real-captured datasets, which provide both densely and sparsely sampled light fields. Finally, we significantly reduce computation cost and GPU memory consumption, while achieving comparable performance with state-of-the-art disparity estimation methods for light fields. Our source code is available at

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here