FAT Forensics: A Python Toolbox for Algorithmic Fairness, Accountability and Transparency

11 Sep 2019  ·  Kacper Sokol, Raul Santos-Rodriguez, Peter Flach ·

Today, artificial intelligence systems driven by machine learning algorithms can be in a position to take important, and sometimes legally binding, decisions about our everyday lives. In many cases, however, these systems and their actions are neither regulated nor certified. To help counter the potential harm that such algorithms can cause we developed an open source toolbox that can analyse selected fairness, accountability and transparency aspects of the machine learning process: data (and their features), models and predictions, allowing to automatically and objectively report them to relevant stakeholders. In this paper we describe the design, scope, usage and impact of this Python package, which is published under the 3-Clause BSD open source licence.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here