GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting

15 Mar 2024  ·  Qijun Feng, Zhen Xing, Zuxuan Wu, Yu-Gang Jiang ·

We introduce GeoGS3D, a novel two-stage framework for reconstructing detailed 3D objects from single-view images. Inspired by the success of pre-trained 2D diffusion models, our method incorporates an orthogonal plane decomposition mechanism to extract 3D geometric features from the 2D input, facilitating the generation of multi-view consistent images. During the following Gaussian Splatting, these images are fused with epipolar attention, fully utilizing the geometric correlations across views. Moreover, we propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization, significantly accelerating the reconstruction process. Extensive experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects, both qualitatively and quantitatively.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods