Feature-Dependent Confusion Matrices for Low-Resource NER Labeling with Noisy Labels

IJCNLP 2019 Lukas LangeMichael A. HedderichDietrich Klakow

In low-resource settings, the performance of supervised labeling models can be improved with automatically annotated or distantly supervised data, which is cheap to create but often noisy. Previous works have shown that significant improvements can be reached by injecting information about the confusion between clean and noisy labels in this additional training data into the classifier training... (read more)

PDF Abstract IJCNLP 2019 PDF IJCNLP 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet