FedEval-LLM: Federated Evaluation of Large Language Models on Downstream Tasks with Collective Wisdom

18 Apr 2024  ·  Yuanqin He, Yan Kang, Lixin Fan, Qiang Yang ·

Federated Learning (FL) has emerged as a promising solution for collaborative training of large language models (LLMs). However, the integration of LLMs into FL introduces new challenges, particularly concerning the evaluation of LLMs. Traditional evaluation methods that rely on labeled test sets and similarity-based metrics cover only a subset of the acceptable answers, thereby failing to accurately reflect the performance of LLMs on generative tasks. Meanwhile, although automatic evaluation methods that leverage advanced LLMs present potential, they face critical risks of data leakage due to the need to transmit data to external servers and suboptimal performance on downstream tasks due to the lack of domain knowledge. To address these issues, we propose a Federated Evaluation framework of Large Language Models, named FedEval-LLM, that provides reliable performance measurements of LLMs on downstream tasks without the reliance on labeled test sets and external tools, thus ensuring strong privacy-preserving capability. FedEval-LLM leverages a consortium of personalized LLMs from participants as referees to provide domain knowledge and collective evaluation capability, thus aligning to the respective downstream tasks and mitigating uncertainties and biases associated with a single referee. Experimental results demonstrate a significant improvement in the evaluation capability of personalized evaluation models on downstream tasks. When applied to FL, these evaluation models exhibit strong agreement with human preference and RougeL-score on meticulously curated test sets. FedEval-LLM effectively overcomes the limitations of traditional metrics and the reliance on external services, making it a promising framework for the evaluation of LLMs within collaborative training scenarios.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here