Few-shot Anomaly Detection in Text with Deviation Learning

22 Aug 2023  ·  Anindya Sundar Das, Aravind Ajay, Sriparna Saha, Monowar Bhuyan ·

Most current methods for detecting anomalies in text concentrate on constructing models solely relying on unlabeled data. These models operate on the presumption that no labeled anomalous examples are available, which prevents them from utilizing prior knowledge of anomalies that are typically present in small numbers in many real-world applications. Furthermore, these models prioritize learning feature embeddings rather than optimizing anomaly scores directly, which could lead to suboptimal anomaly scoring and inefficient use of data during the learning process. In this paper, we introduce FATE, a deep few-shot learning-based framework that leverages limited anomaly examples and learns anomaly scores explicitly in an end-to-end method using deviation learning. In this approach, the anomaly scores of normal examples are adjusted to closely resemble reference scores obtained from a prior distribution. Conversely, anomaly samples are forced to have anomalous scores that considerably deviate from the reference score in the upper tail of the prior. Additionally, our model is optimized to learn the distinct behavior of anomalies by utilizing a multi-head self-attention layer and multiple instance learning approaches. Comprehensive experiments on several benchmark datasets demonstrate that our proposed approach attains a new level of state-of-the-art performance.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here