Fine-grained Anomaly Detection via Multi-task Self-Supervision

20 Apr 2021  ·  Loic Jezequel, Ngoc-Son Vu, Jean Beaudet, Aymeric Histace ·

Detecting anomalies using deep learning has become a major challenge over the last years, and is becoming increasingly promising in several fields. The introduction of self-supervised learning has greatly helped many methods including anomaly detection where simple geometric transformation recognition tasks are used. However these methods do not perform well on fine-grained problems since they lack finer features. By combining in a multi-task framework high-scale shape features oriented task with low-scale fine features oriented task, our method greatly improves fine-grained anomaly detection. It outperforms state-of-the-art with up to 31% relative error reduction measured with AUROC on various anomaly detection problems.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here