Fine-Grained Data Selection for Improved Energy Efficiency of Federated Edge Learning

20 Jun 2021  ·  Abdullatif Albaseer, Mohamed Abdallah, Ala Al-Fuqaha, Aiman Erbad ·

In Federated edge learning (FEEL), energy-constrained devices at the network edge consume significant energy when training and uploading their local machine learning models, leading to a decrease in their lifetime. This work proposes novel solutions for energy-efficient FEEL by jointly considering local training data, available computation, and communications resources, and deadline constraints of FEEL rounds to reduce energy consumption. This paper considers a system model where the edge server is equipped with multiple antennas employing beamforming techniques to communicate with the local users through orthogonal channels. Specifically, we consider a problem that aims to find the optimal user's resources, including the fine-grained selection of relevant training samples, bandwidth, transmission power, beamforming weights, and processing speed with the goal of minimizing the total energy consumption given a deadline constraint on the communication rounds of FEEL. Then, we devise tractable solutions by first proposing a novel fine-grained training algorithm that excludes less relevant training samples and effectively chooses only the samples that improve the model's performance. After that, we derive closed-form solutions, followed by a Golden-Section-based iterative algorithm to find the optimal computation and communication resources that minimize energy consumption. Experiments using MNIST and CIFAR-10 datasets demonstrate that our proposed algorithms considerably outperform the state-of-the-art solutions as energy consumption decreases by 79% for MNIST and 73% for CIFAR-10 datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here