Finite- and Fixed-Time Nonovershooting Stabilizers and Safety Filters by Homogeneous Feedback

15 Feb 2022  ·  Andrey Polyakov, Miroslav Krstic ·

Non-overshooting stabilization is a form of safe control where the setpoint chosen by the user is at the boundary of the safe set. Exponential non-overshooting stabilization, including suitable extensions to systems with deterministic and stochastic disturbances, has been solved by the second author and his coauthors. In this paper we develop homogeneous feedback laws for fixed-time nonovershooting stabilization for nonlinear systems that are input-output linearizable with a full relative degree, i.e., for systems that are diffeomorphically equivalent to the chain of integrators. These homogeneous feedback laws can also assume the secondary role of `fixed-time safety filters' (FxTSf filters) which keep the system within the closed safe set for all time but, in the case where the user's nominal control commands approach to the unsafe set, allow the system to reach the boundary of the safe set no later than a desired time that is independent of nominal control and independent of the value of the state at the time the nominal control begins to be overridden.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here