From Protocol to Screening: A Hybrid Learning Approach for Technology-Assisted Systematic Literature Reviews

19 Nov 2020  ·  Athanasios Lagopoulos, Grigorios Tsoumakas ·

In the medical domain, a Systematic Literature Review (SLR) attempts to collect all empirical evidence, that fit pre-specified eligibility criteria, in order to answer a specific research question. The process of preparing an SLR consists of multiple tasks that are labor-intensive and time-consuming, involving large monetary costs. Technology-assisted review (TAR) methods automate the different processes of creating an SLR and they are particularly focused on reducing the burden of screening for reviewers. We present a novel method for TAR that implements a full pipeline from the research protocol to the screening of the relevant papers. Our pipeline overcomes the need of a Boolean query constructed by specialists and consists of three different components: the primary retrieval engine, the inter-review ranker and the intra-review ranker, combining learning-to-rank techniques with a relevance feedback method. In addition, we contribute an updated version of the Task 2 of the CLEF 2019 eHealth Lab dataset, which we make publicly available. Empirical results on this dataset show that our approach can achieve state-of-the-art results.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here