Functional additive models on manifolds of planar shapes and forms

6 Sep 2021  ·  Almond Stöcker, Lisa Steyer, Sonja Greven ·

The "shape" of a planar curve and/or landmark configuration is considered its equivalence class under translation, rotation and scaling, its "form" its equivalence class under translation and rotation while scale is preserved. We extend generalized additive regression to models for such shapes/forms as responses respecting the resulting quotient geometry by employing the squared geodesic distance as loss function and a geodesic response function to map the additive predictor to the shape/form space. For fitting the model, we propose a Riemannian $L_2$-Boosting algorithm well suited for a potentially large number of possibly parameter-intensive model terms, which also yields automated model selection. We provide novel intuitively interpretable visualizations for (even non-linear) covariate effects in the shape/form space via suitable tensor-product factorization. The usefulness of the proposed framework is illustrated in an analysis of 1) astragalus shapes of wild and domesticated sheep and 2) cell forms generated in a biophysical model, as well as 3) in a realistic simulation study with response shapes and forms motivated from a dataset on bottle outlines.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here