GAP Safe Screening Rules for Sparse-Group Lasso

For statistical learning in high dimension, sparse regularizations have proven useful to boost both computational and statistical efficiency. In some contexts, it is natural to handle more refined structures than pure sparsity, such as for instance group sparsity. Sparse-Group Lasso has recently been introduced in the context of linear regression to enforce sparsity both at the feature and at the group level. We propose the first (provably) safe screening rules for Sparse-Group Lasso, i.e., rules that allow to discard early in the solver features/groups that are inactive at optimal solution. Thanks to efficient dual gap computations relying on the geometric properties of $\epsilon$-norm, safe screening rules for Sparse-Group Lasso lead to significant gains in term of computing time for our coordinate descent implementation.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.