GenAD: General Representations of Multivariate Time Series for Anomaly Detection
Anomaly Detection(AD) for multivariate time series is an active area in machine learning, with critical applications in Information Technology system management, Spacecraft Health monitoring, Multi-Robot Systems detection, etc.. However, due to complex correlations and various temporal patterns of large-scale multivariate time series, a general unsupervised anomaly detection model with higher F1-score and Timeliness remains a challenging task. In this paper, We propose a General representations of multivariate time series for Anomaly Detection(GenAD). First, we apply Time-Series Attention to represent the various temporal patterns of each time series. Second, we employ Multi-Correlation Attention to represent the complex correlations of multivariate time series. With the above innovations, GenAD improves F1-scores of AD by 0.3% to 5% over state-of-the-art model in public datasets, while detecting anomalies more rapidly in anomaly segments. Moreover, we propose a general pre-training algorithm on large-scale multivariate time series, which can be easily transferred to a specific AD tasks with only a few fine-tuning steps. Extensive experiments show that GenAD is able to outperform state-of-the-art model with only 10% of the training data.
PDF Abstract