Generalized Lasso based Approximation of Sparse Coding for Visual Recognition

Sparse coding, a method of explaining sensory data with as few dictionary bases as possible, has attracted much attention in computer vision. For visual object category recognition, L1 regularized sparse coding is combined with spatial pyramid representation to obtain state-of-the-art performance... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet