Gradient Descent Meets Shift-and-Invert Preconditioning for Eigenvector Computation

NeurIPS 2018  ·  Zhiqiang Xu ·

Shift-and-invert preconditioning, as a classic acceleration technique for the leading eigenvector computation, has received much attention again recently, owing to fast least-squares solvers for efficiently approximating matrix inversions in power iterations. In this work, we adopt an inexact Riemannian gradient descent perspective to investigate this technique on the effect of the step-size scheme... The shift-and-inverted power method is included as a special case with adaptive step-sizes. Particularly, two other step-size settings, i.e., constant step-sizes and Barzilai-Borwein (BB) step-sizes, are examined theoretically and/or empirically. We present a novel convergence analysis for the constant step-size setting that achieves a rate at $\tilde{O}(\sqrt{\frac{\lambda_{1}}{\lambda_{1}-\lambda_{p+1}}})$, where $\lambda_{i}$ represents the $i$-th largest eigenvalue of the given real symmetric matrix and $p$ is the multiplicity of $\lambda_{1}$. Our experimental studies show that the proposed algorithm can be significantly faster than the shift-and-inverted power method in practice. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here