Graph Laplacian Regularization for Image Denoising: Analysis in the Continuous Domain

27 Apr 2016 Jiahao Pang Gene Cheung

Inverse imaging problems are inherently under-determined, and hence it is important to employ appropriate image priors for regularization. One recent popular prior---the graph Laplacian regularizer---assumes that the target pixel patch is smooth with respect to an appropriately chosen graph... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet