Ground-Truth Free Meta-Learning for Deep Compressive Sampling

CVPR 2023  ·  Xinran Qin, Yuhui Quan, Tongyao Pang, Hui Ji ·

Deep learning has become an important tool for reconstructing images in compressive sampling (CS). This paper proposes a ground-truth (GT) free meta-learning method for CS, which leverages both external and internal learning for unsupervised high-quality image reconstruction. The proposed method first trains a deep model via external meta-learning using only CS measurements, and then efficiently adapts the trained model to a test sample for further improvement by exploiting its internal characteristics. The meta-learning and model adaptation are built on an improved Stein's unbiased risk estimator (iSURE) that provides efficient computation and effective guidance for accurate prediction in the range space of the adjoint of the measurement matrix. To further improve the learning on the null space of the measurement matrix, a modified model-agnostic meta-learning scheme is proposed, along with a null-space-consistent loss and a bias-adaptive deep unrolling network to improve and accelerate model adaption in test time. Experimental results have demonstrated that the proposed GT-free method performs well, and can even compete with supervised learning-based methods.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods