Heuristic Feature Selection for Clickbait Detection

4 Feb 2018Matti WiegmannMichael VölskeBenno SteinMatthias HagenMartin Potthast

We study feature selection as a means to optimize the baseline clickbait detector employed at the Clickbait Challenge 2017. The challenge's task is to score the "clickbaitiness" of a given Twitter tweet on a scale from 0 (no clickbait) to 1 (strong clickbait)... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet