How to Solve Fair k-Center in Massive Data Models

Fueled by massive data, important decision making is being automated with the help of algorithms, therefore, fairness in algorithms has become an especially important research topic. In this work, we design new streaming and distributed algorithms for the fair k-center problem that models fair data summarization. The streaming and distributed models of computation have an attractive feature of being able to handle massive data sets that do not fit into main memory. Our main contributions are: (a) the first distributed algorithm; which has provably constant approximation ratio and is extremely parallelizable, and (b) a two-pass streaming algorithm with a provable approximation guarantee matching the best known algorithm (which is not a streaming algorithm). Our algorithms have the advantages of being easy to implement in practice, being fast with linear running times, having very small working memory and communication, and outperforming existing algorithms on several real and synthetic data sets. To complement our distributed algorithm, we also give a hardness result for natural distributed algorithms, which holds for even the special case of k-center.

PDF ICML 2020 PDF

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here