Hybrid Deep Network for Anomaly Detection

17 Aug 2019  ·  Trong Nguyen Nguyen, Jean Meunier ·

In this paper, we propose a deep convolutional neural network (CNN) for anomaly detection in surveillance videos. The model is adapted from a typical auto-encoder working on video patches under the perspective of sparse combination learning. Our CNN focuses on (unsupervisedly) learning common characteristics of normal events with the emphasis of their spatial locations (by supervised losses). To our knowledge, this is the first work that directly adapts the patch position as the target of a classification sub-network. The model is capable to provide a score of anomaly assessment for each video frame. Our experiments were performed on 4 benchmark datasets with various anomalous events and the obtained results were competitive with state-of-the-art studies.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here