Identifying Computer-Translated Paragraphs using Coherence Features

We have developed a method for extracting the coherence features from a paragraph by matching similar words in its sentences. We conducted an experiment with a parallel German corpus containing 2000 human-created and 2000 machine-translated paragraphs. The result showed that our method achieved the best performance (accuracy = 72.3%, equal error rate = 29.8%) when it is compared with previous methods on various computer-generated text including translation and paper generation (best accuracy = 67.9%, equal error rate = 32.0%). Experiments on Dutch, another rich resource language, and a low resource one (Japanese) attained similar performances. It demonstrated the efficiency of the coherence features at distinguishing computer-translated from human-created paragraphs on diverse languages.

PDF Abstract PACLIC 2018 PDF PACLIC 2018 Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here