Causal Inference Despite Limited Global Confounding via Mixture Models

22 Dec 2021  ·  Spencer L. Gordon, Bijan Mazaheri, Yuval Rabani, Leonard J. Schulman ·

A Bayesian Network is a directed acyclic graph (DAG) on a set of $n$ random variables (the vertices); a Bayesian Network Distribution (BND) is a probability distribution on the random variables that is Markovian on the graph. A finite $k$-mixture of such models is graphically represented by a larger graph which has an additional ``hidden'' (or ``latent'') random variable $U$, ranging in $\{1,\ldots,k\}$, and a directed edge from $U$ to every other vertex. Models of this type are fundamental to causal inference, where $U$ models an unobserved confounding effect of multiple populations, obscuring the causal relationships in the observable DAG. By solving the mixture problem and recovering the joint probability distribution with $U$, traditionally unidentifiable causal relationships become identifiable. Using a reduction to the more well-studied ``product'' case on empty graphs, we give the first algorithm to learn mixtures of non-empty DAGs.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here