A fundamental problem in image deblurring is to recover reliably distinct spatial frequencies that have been suppressed by the blur kernel. To tackle this issue, existing image deblurring techniques often rely on generic image priors such as the sparsity of salient features including image gradients and edges. However, these priors only help recover part of the frequency spectrum, such as the frequencies near the high-end. To this end, we pose the following specific questions: (i) Does any image class information offer an advantage over existing generic priors for image quality restoration? (ii) If a class-specific prior exists, how should it be encoded into a deblurring framework to recover attenuated image frequencies? Throughout this work, we devise a class-specific prior based on the band-pass filter responses and incorporate it into a deblurring strategy. More specifically, we show that the subspace of band-pass filtered images and their intensity distributions serve as useful priors for recovering image frequencies that are difficult to recover by generic image priors. We demonstrate that our image deblurring framework, when equipped with the above priors, significantly outperforms many state-of-the-art methods using generic image priors or class-specific exemplars.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here