Image Fusion in Remote Sensing: An Overview and Meta Analysis

16 Jan 2024  ·  Hessah Albanwan, Rongjun Qin, Yang Tang ·

Image fusion in Remote Sensing (RS) has been a consistent demand due to its ability to turn raw images of different resolutions, sources, and modalities into accurate, complete, and spatio-temporally coherent images. It greatly facilitates downstream applications such as pan-sharpening, change detection, land-cover classification, etc. Yet, image fusion solutions are highly disparate to various remote sensing problems and thus are often narrowly defined in existing reviews as topical applications, such as pan-sharpening, and spatial-temporal image fusion. Considering that image fusion can be theoretically applied to any gridded data through pixel-level operations, in this paper, we expanded its scope by comprehensively surveying relevant works with a simple taxonomy: 1) many-to-one image fusion; 2) many-to-many image fusion. This simple taxonomy defines image fusion as a mapping problem that turns either a single or a set of images into another single or set of images, depending on the desired coherence, e.g., spectral, spatial/resolution coherence, etc. We show that this simple taxonomy, despite the significant modality difference it covers, can be presented by a conceptually easy framework. In addition, we provide a meta-analysis to review the major papers studying the various types of image fusion and their applications over the years (from the 1980s to date), covering 5,926 peer-reviewed papers. Finally, we discuss the main benefits and emerging challenges to provide open research directions and potential future works.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here