Implicit Bias of Gradient Descent on Linear Convolutional Networks
We show that gradient descent on full-width linear convolutional networks of depth $L$ converges to a linear predictor related to the $\ell_{2/L}$ bridge penalty in the frequency domain. This is in contrast to linearly fully connected networks, where gradient descent converges to the hard margin linear support vector machine solution, regardless of depth.
PDF Abstract NeurIPS 2018 PDF NeurIPS 2018 AbstractTasks
Datasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here