Improving Neural Question Generation using World Knowledge

9 Sep 2019  ·  Deepak Gupta, Kaheer Suleman, Mahmoud Adada, Andrew McNamara, Justin Harris ·

In this paper, we propose a method for incorporating world knowledge (linked entities and fine-grained entity types) into a neural question generation model. This world knowledge helps to encode additional information related to the entities present in the passage required to generate human-like questions. We evaluate our models on both SQuAD and MS MARCO to demonstrate the usefulness of the world knowledge features. The proposed world knowledge enriched question generation model is able to outperform the vanilla neural question generation model by 1.37 and 1.59 absolute BLEU 4 score on SQuAD and MS MARCO test dataset respectively.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here