Improving Performance of Self-Organising Maps with Distance Metric Learning Method

4 Jul 2014  ·  Piotr Płoński, Krzysztof Zaremba ·

Self-Organising Maps (SOM) are Artificial Neural Networks used in Pattern Recognition tasks. Their major advantage over other architectures is human readability of a model. However, they often gain poorer accuracy. Mostly used metric in SOM is the Euclidean distance, which is not the best approach to some problems. In this paper, we study an impact of the metric change on the SOM's performance in classification problems. In order to change the metric of the SOM we applied a distance metric learning method, so-called 'Large Margin Nearest Neighbour'. It computes the Mahalanobis matrix, which assures small distance between nearest neighbour points from the same class and separation of points belonging to different classes by large margin. Results are presented on several real data sets, containing for example recognition of written digits, spoken letters or faces.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods