Improving the Transferability of Adversarial Attacks on Face Recognition with Beneficial Perturbation Feature Augmentation

28 Oct 2022  ·  Fengfan Zhou, Hefei Ling, Yuxuan Shi, Jiazhong Chen, Zongyi Li, Ping Li ·

Face recognition (FR) models can be easily fooled by adversarial examples, which are crafted by adding imperceptible perturbations on benign face images. The existence of adversarial face examples poses a great threat to the security of society. In order to build a more sustainable digital nation, in this paper, we improve the transferability of adversarial face examples to expose more blind spots of existing FR models. Though generating hard samples has shown its effectiveness in improving the generalization of models in training tasks, the effectiveness of utilizing this idea to improve the transferability of adversarial face examples remains unexplored. To this end, based on the property of hard samples and the symmetry between training tasks and adversarial attack tasks, we propose the concept of hard models, which have similar effects as hard samples for adversarial attack tasks. Utilizing the concept of hard models, we propose a novel attack method called Beneficial Perturbation Feature Augmentation Attack (BPFA), which reduces the overfitting of adversarial examples to surrogate FR models by constantly generating new hard models to craft the adversarial examples. Specifically, in the backpropagation, BPFA records the gradients on pre-selected feature maps and uses the gradient on the input image to craft the adversarial example. In the next forward propagation, BPFA leverages the recorded gradients to add beneficial perturbations on their corresponding feature maps to increase the loss. Extensive experiments demonstrate that BPFA can significantly boost the transferability of adversarial attacks on FR.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here