In all LikelihoodS: How to Reliably Select Pseudo-Labeled Data for Self-Training in Semi-Supervised Learning

2 Mar 2023  ·  Julian Rodemann, Christoph Jansen, Georg Schollmeyer, Thomas Augustin ·

Self-training is a simple yet effective method within semi-supervised learning. The idea is to iteratively enhance training data by adding pseudo-labeled data. Its generalization performance heavily depends on the selection of these pseudo-labeled data (PLS). In this paper, we aim at rendering PLS more robust towards the involved modeling assumptions. To this end, we propose to select pseudo-labeled data that maximize a multi-objective utility function. The latter is constructed to account for different sources of uncertainty, three of which we discuss in more detail: model selection, accumulation of errors and covariate shift. In the absence of second-order information on such uncertainties, we furthermore consider the generic approach of the generalized Bayesian alpha-cut updating rule for credal sets. As a practical proof of concept, we spotlight the application of three of our robust extensions on simulated and real-world data. Results suggest that in particular robustness w.r.t. model choice can lead to substantial accuracy gains.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here