Indirect Adaptive Control of Nonlinearly Parameterized Nonlinear Dissipative Systems

15 Jan 2022  ·  Romeo Ortega, Rafael Cisneros, Lei Wang, Arjan van der Schaft ·

In this note we address the problem of indirect adaptive (regulation or tracking) control of nonlinear, input affine dissipative systems. It is assumed that the supply rate, the storage and the internal dissipation functions may be expressed as nonlinearly parameterized regression equations where the mappings (depending on the unknown parameters) satisfy a monotonicity condition -- this encompasses a large class of physical systems, including passive systems. We propose to estimate the system parameters using the "power-balance" equation, which is the differential version of the classical dissipation inequality, with a new estimator that ensures global, exponential, parameter convergence under the very weak assumption of interval excitation of the power-balance equation regressor. To design the indirect adaptive controller we make the standard assumption of existence of an asymptotically stabilizing controller that depends -- possibly nonlinearly -- on the unknown plant parameters, and apply a certainty-equivalent control law. The benefits of the proposed approach, with respect to other existing solutions, are illustrated with examples.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here