IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization

EMNLP 2021  ·  Fajri Koto, Jey Han Lau, Timothy Baldwin ·

We present IndoBERTweet, the first large-scale pretrained model for Indonesian Twitter that is trained by extending a monolingually-trained Indonesian BERT model with additive domain-specific vocabulary. We focus in particular on efficient model adaptation under vocabulary mismatch, and benchmark different ways of initializing the BERT embedding layer for new word types. We find that initializing with the average BERT subword embedding makes pretraining five times faster, and is more effective than proposed methods for vocabulary adaptation in terms of extrinsic evaluation over seven Twitter-based datasets.

PDF Abstract EMNLP 2021 PDF EMNLP 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.