Latent prediction models, exemplified by multi-layer networks, employ hidden variables that automate abstract feature discovery. They typically pose nonconvex optimization problems and effective semi-definite programming (SDP) relaxations have been developed to enable global solutions (Aslan et al., 2014).However, these models rely on nonparametric training of layer-wise kernel representations, and are therefore restricted to transductive learning which slows down test prediction... (read more)
PDFMETHOD | TYPE | |
---|---|---|
![]() |
Activation Functions |