Inference of ventricular activation properties from non-invasive electrocardiography

The realisation of precision cardiology requires novel techniques for the non-invasive characterisation of individual patients' cardiac function to inform therapeutic and diagnostic decision-making. The electrocardiogram (ECG) is the most widely used clinical tool for cardiac diagnosis. Its interpretation is, however, confounded by functional and anatomical variability in heart and torso. In this study, we develop new computational techniques to estimate key ventricular activation properties for individual subjects by exploiting the synergy between non-invasive electrocardiography and image-based torso-biventricular modelling and simulation. More precisely, we present an efficient sequential Monte Carlo approximate Bayesian computation-based inference method, integrated with Eikonal simulations and torso-biventricular models constructed based on clinical cardiac magnetic resonance (CMR) imaging. The method also includes a novel strategy to treat combined continuous (conduction speeds) and discrete (earliest activation sites) parameter spaces, and an efficient dynamic time warping-based ECG comparison algorithm. We demonstrate results from our inference method on a cohort of twenty virtual subjects with cardiac volumes ranging from 74 cm3 to 171 cm3 and considering low versus high resolution for the endocardial discretisation (which determines possible locations of the earliest activation sites). Results show that our method can successfully infer the ventricular activation properties from non-invasive data, with higher accuracy for earliest activation sites, endocardial speed, and sheet (transmural) speed in sinus rhythm, rather than the fibre or sheet-normal speeds.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here