Inter-Realization Channels: Unsupervised Anomaly Detection Beyond One-Class Classification

ICCV 2023  ·  Declan McIntosh, Alexandra Branzan Albu ·

Unsupervised anomaly detection and localization in images is a challenging problem, leading previous methods to attempt an easier supervised one-class classification formalization. Assuming training images to be realizations of the underlying image distribution, it follows that nominal patches from these realizations will be well associated between and represented across realizations. From this, we propose Inter-Realization Channels (InReaCh), a fully unsupervised method of detecting and localizing anomalies. InReaCh extracts high-confidence nominal patches from training data by associating them between realizations into channels, only considering channels with high spans and low spread as nominal. We then create our nominal model from the patches of these channels to test new patches against. InReaCh extracts nominal patches from the MVTec AD dataset with 99.9% precision, then archives 0.968 AUROC in localization and 0.923 AUROC in detection with corrupted training data, competitive with current state-of-the-art supervised one-class classification methods. We test our model up to 40% of training data containing anomalies with negligibly affected performance. The shift to fully unsupervised training simplifies dataset creation and broadens possible applications.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here