Interpretable Reinforcement Learning With Neural Symbolic Logic

1 Jan 2021  ·  Zhihao Ma, Yuzheng Zhuang, Paul Weng, Dong Li, Kun Shao, Wulong Liu, Hankz Hankui Zhuo, Jianye Hao ·

Recent progress in deep reinforcement learning (DRL) can be largely attributed to the use of neural networks. However, this black-box approach fails to explain the learned policy in a human understandable way. To address this challenge and improve the transparency, we introduce symbolic logic into DRL and propose a Neural Symbolic Reinforcement Learning framework, in which states and actions are represented in an interpretable way using first-order logic. This framework features a relational reasoning module, which performs on task-level in Hierarchical Reinforcement Learning, enabling end-to-end learning with prior symbolic knowledge. Moreover, interpretability is enabled by extracting the logical rules learned by the reasoning module in a symbolic rule space, providing explainability on task level. Experimental results demonstrate better interpretability of subtasks, along with competing performance compared with existing approaches.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.