Introducing a Generative Adversarial Network Model for Lagrangian Trajectory Simulation

13 Jan 2019  ·  Jingwei Gan, Pai Liu, Rajan K. Chakrabarty ·

We introduce a generative adversarial network (GAN) model to simulate the 3-dimensional Lagrangian motion of particles trapped in the recirculation zone of a buoyancy-opposed flame. The GAN model comprises a stochastic recurrent neural network, serving as a generator, and a convoluted neural network, serving as a discriminator. Adversarial training was performed to the point where the best-trained discriminator failed to distinguish the ground truth from the trajectory produced by the best-trained generator. The model performance was then benchmarked against a statistical analysis performed on both the simulated trajectories and the ground truth, with regard to the accuracy and generalization criteria.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods