Joint Learning of Probabilistic and Geometric Shaping for Coded Modulation Systems

10 Apr 2020  ·  Fayçal Ait Aoudia, Jakob Hoydis ·

We introduce a trainable coded modulation scheme that enables joint optimization of the bit-wise mutual information (BMI) through probabilistic shaping, geometric shaping, bit labeling, and demapping for a specific channel model and for a wide range of signal-to-noise ratios (SNRs). Compared to probabilistic amplitude shaping (PAS), the proposed approach is not restricted to symmetric probability distributions, can be optimized for any channel model, and works with any code rate $k/m$, $m$ being the number of bits per channel use and $k$ an integer within the range from $1$ to $m-1$. The proposed scheme enables learning of a continuum of constellation geometries and probability distributions determined by the SNR. Additionally, the PAS architecture with Maxwell-Boltzmann (MB) as shaping distribution was extended with a neural network (NN) that controls the MB shaping of a quadrature amplitude modulation (QAM) constellation according to the SNR, enabling learning of a continuum of MB distributions for QAM. Simulations were performed to benchmark the performance of the proposed joint probabilistic and geometric shaping scheme on additive white Gaussian noise (AWGN) and mismatched Rayleigh block fading (RBF) channels.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here