Joint Unsupervised and Supervised Training for Automatic Speech Recognition via Bilevel Optimization

13 Jan 2024  ·  A F M Saif, Xiaodong Cui, Han Shen, Songtao Lu, Brian Kingsbury, Tianyi Chen ·

In this paper, we present a novel bilevel optimization-based training approach to training acoustic models for automatic speech recognition (ASR) tasks that we term {bi-level joint unsupervised and supervised training (BL-JUST)}. {BL-JUST employs a lower and upper level optimization with an unsupervised loss and a supervised loss respectively, leveraging recent advances in penalty-based bilevel optimization to solve this challenging ASR problem with affordable complexity and rigorous convergence guarantees.} To evaluate BL-JUST, extensive experiments on the LibriSpeech and TED-LIUM v2 datasets have been conducted. BL-JUST achieves superior performance over the commonly used pre-training followed by fine-tuning strategy.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here