Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves

6 Nov 2021  ·  Rahul Singh, Liyuan Xu, Arthur Gretton ·

We propose simple nonparametric estimators for mediated and time-varying dose response curves based on kernel ridge regression. By embedding Pearl's mediation formula and Robins' g-formula with kernels, we allow treatments, mediators, and covariates to be continuous in general spaces, and also allow for nonlinear treatment-confounder feedback. Our key innovation is a reproducing kernel Hilbert space technique called sequential kernel embedding, which we use to construct simple estimators for complex causal estimands. Our estimators preserve the generality of classic identification while also achieving nonasymptotic uniform rates. In nonlinear simulations with many covariates, we demonstrate strong performance. We estimate mediated and time-varying dose response curves of the US Job Corps, and clean data that may serve as a benchmark in future work. We extend our results to mediated and time-varying treatment effects and counterfactual distributions, verifying semiparametric efficiency and weak convergence.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here