Kinematics-aware Trajectory Generation and Prediction with Latent Stochastic Differential Modeling

17 Sep 2023  ·  Ruochen Jiao, YiXuan Wang, Xiangguo Liu, Chao Huang, Qi Zhu ·

Trajectory generation and trajectory prediction are two critical tasks in autonomous driving, which generate various trajectories for testing during development and predict the trajectories of surrounding vehicles during operation, respectively. In recent years, emerging data-driven deep learning-based methods have shown great promise for these two tasks in learning various traffic scenarios and improving average performance without assuming physical models. However, it remains a challenging problem for these methods to ensure that the generated/predicted trajectories are physically realistic. This challenge arises because learning-based approaches often function as opaque black boxes and do not adhere to physical laws. Conversely, existing model-based methods provide physically feasible results but are constrained by predefined model structures, limiting their capabilities to address complex scenarios. To address the limitations of these two types of approaches, we propose a new method that integrates kinematic knowledge into neural stochastic differential equations (SDE) and designs a variational autoencoder based on this latent kinematics-aware SDE (LK-SDE) to generate vehicle motions. Experimental results demonstrate that our method significantly outperforms both model-based and learning-based baselines in producing physically realistic and precisely controllable vehicle trajectories. Additionally, it performs well in predicting unobservable physical variables in the latent space.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods